Using Tree-Decomposable Structures to Approximate Belief Networks

نویسنده

  • Sumit Sarkar
چکیده

Tree structures have been shown to provide an efficient framework for propagating beliefs [Pearl,l986]. This paper studies the problem of finding an optimal approximating tree. The star­ decomposition scheme for sets of three binary variables [Lazarsfeld,l966; Pearl,1986] is shown to enhance the class of probability distributions that can support tree structures; such structures are called tree-decomposable structures. The logarithm scoring rule is found to be an appropriate optimality criterion to evaluate different tree-decomposable structures. Characteristics of such structures closest to the actual belief network are identified using the logarithm rule, and greedy and exact techniques are developed to find the optimal approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tractable Bayesian Learning of Tree Belief Networks

In this paper we present decomposable priors, a family of priors over structure and parameters of tree belief nets for which Bayesian learning with complete observations is tractable, in the sense that the posterior is also decomposable and can be completely determined ana­ lytically in polynomial time. This fol­ lows from two main results: First, we show that factored distributions over spanni...

متن کامل

Exploiting Locality in Probabilistic Inference

Exploiting Locality in Probabilistic Inference by Mark Andrew Paskin Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart J. Russell, Chair This thesis investigates computational properties of decomposable probability models, which can be represented in terms of marginals over subsets of variables. We show that decomposable representations have significan...

متن کامل

Approximate Inference in Graphical Models using Tensor Decompositions

We demonstrate that tensor decompositions can be used to transform graphical models into structurally simpler graphical models that approximate the same joint probability distribution. In this way, standard inference algorithms such as the junction tree algorithm, can be used in order to use the transformed graphical model for approximate inference. The usefulness of the technique is demonstrat...

متن کامل

Exact and Approximate Inference for Annotating Graphs with Structural SVMs

Training processes of structured prediction models such as structural SVMs involve frequent computations of the maximum-aposteriori (MAP) prediction given a parameterized model. For specific output structures such as sequences or trees, MAP estimates can be computed efficiently by dynamic programming algorithms such as the Viterbi algorithm and the CKY parser. However, when the output structure...

متن کامل

Graphical Models for Structured Classification, with an Application to Interpreting Images of Protein Subcellular Location Patterns

In structured classification problems, there is a direct conflict between expressive models and efficient inference: while graphical models such as Markov random fields or factor graphs can represent arbitrary dependences among instance labels, the cost of inference via belief propagation in these models grows rapidly as the graph structure becomes more complicated. One important source of comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993